Effect of Carbon Concentration on the Sputtering of Carbon-Rich SiC Bombarded by Helium Ions

نویسندگان

  • Xinghao Liang
  • Yang Li
  • Qiang Zhao
  • Zheng Zhang
  • Xiaoping Ouyang
چکیده

Silicon carbide (SiC) is considered as an important material for nuclear engineering due to its excellent properties. Changing the carbon content in SiC can regulate and control its elastic and thermodynamic properties, but a simulation study of the effect of carbon content on the sputtering (caused by the helium ions) of SiC is still lacking. In this work, we used the Monte-Carlo and molecular dynamics simulation methods to study the effects of carbon concentration, incidence energy, incident angle, and target temperature on the sputtering yield of SiC. The results show that the incident ions’ energy and angle have a significant effect on sputtering yield of SiC when the carbon concentration in SiC is around 62 at %, while the target temperature has a little effect on the sputtering yield of SiC. Our work might provide theoretical support for the experimental research and engineering application of carbon fiber-reinforced SiC that be used as the plasma-facing material in tokamak fusion reactors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidation of ZrB2-SiC Composites at 1600 °C: Effect of Carbides, Borides, Silicides, and Chopped Carbon Fiber

The aim of this work is to optimize the oxidation resistance of ZrB2-SiC-based composites with different additives. Effect of nine factors including SiC, Cf, MoSi2, HfB2 and ZrC contents, milling time of Cf (M.t) and SPS parameters such as temperature, time and pressure on oxidation resistance in four levels was investigated. Taguchi design was applied to explore effective parameters for ...

متن کامل

Interaction of some heavy metal ions with single walled carbon nanotube

The interaction between some heavy metal ions such as of Pb(II), Cd(II) and Cu(II) ions from aqueous solution adsorbed by single walled carbon nanotube (SWCNTs) and carboxylate group functionalized single walled carbon nanotube (SWCNT-COOH) surfaces were studied by atomic absorption spectroscopy. The effect of contact time, pH, initial concentration of ion, ionic strength and temperature on the...

متن کامل

Interaction of some heavy metal ions with single walled carbon nanotube

The interaction between some heavy metal ions such as of Pb(II), Cd(II) and Cu(II) ions from aqueous solution adsorbed by single walled carbon nanotube (SWCNTs) and carboxylate group functionalized single walled carbon nanotube (SWCNT-COOH) surfaces were studied by atomic absorption spectroscopy. The effect of contact time, pH, initial concentration of ion, ionic strength and temperature on the...

متن کامل

Design and construction of a helium purification system using cryogenic adsorption process

One of the most appropriate methods for elimination of trace impurities in helium is cryogenic adsorption process. So, in this study design and construction of cryogenic adsorption helium purification system (3 Nm3.hr-1, 80 bar) carried out using activated carbon as adsorbent at 77K. To evaluation of adsorption dynamics and effect of pressure on elimination of trace impurities, helium purificat...

متن کامل

Determination of Rhodium(III) Ions by Flame Atomic Absorption Spectrometry after Preconcentration with Modified Magnetic Activated Carbon

A new method for analysis of trace amount of Rh(III) ions by magnetic activated carbon modified with 2,3,5,6-tetra(2-pyridyl)pyrazine (MAC/TPPZ) as the magnetic sorbent has been proposed. The proposed adsorbent was found to be advantageous over conventional solid phase extraction (SPE) in terms of operational simplicity and low time-consuming. The experimental parameters affecting the extractio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018